As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
3D printing of lightweight continuous carbon fiber reinforced plastics (CCFRP) in three dimensions changes the traditional composite manufacturing processes. The continuous carbon fibers reinforced plastic filament can be printed along the load transmission path and significantly improve the strength of composite structures. Compared to the three-axis computer numerical controlled (CNC) machine based printing process, industrial robots provide the possibility to manufacture complex, spatial and large-scale composite structures. Here, the concept to use multi-robot to print complex spatial CCFRP components simultaneously has been presented. More than one 6 degrees of freedom industrial robots can cooperate with each other and solve the contradiction between structural complexity and printing reachability. During the printing process, the deformation of composite structures may happen, especially for the self-supporting components. Thus, in this paper, a Light Detection and Ranging (LiDAR) method is introduced to detect the deformation of printed composite structure and the movements of two UR robots. To obtain the point clouds of the printed structure, a LiDAR camera D435i has been installed on one robot. A new approach by combining coordinate transformation and iterative-closest-point (ICP) algorithm has been developed to merge the point clouds collected from different shooting angles of the camera.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.