As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Backbones of propositional theories are literals that are true in every model. Backbones have been used for characterizing the hardness of decision and optimization problems. Moreover, backbones find other applications. For example, backbones are often identified during product configuration. Backbones can also improve the efficiency of solving computational problems related with propositional theories. These include model enumeration, minimal model computation and prime implicant computation. This paper investigates algorithms for computing backbones of propositional theories, emphasizing the integration of these algorithms with modern SAT solvers. Experimental results, obtained on representative problem instances, indicate that the proposed algorithms are effective in practice and can be used for computing the backbones of large propositional theories. In addition, the experimental results indicate that propositional theories can have large backbones, often representing a significant percentage of the total number of variables.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.