As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A formal notion of a Boolean-function decomposition was introduced recently and used to provide lower bounds on various representations of Boolean functions, which are subsets of decomposable negation normal form (DNNF). This notion has introduced a fundamental optimization problem for DNNF representations, which calls for computing decompositions of minimal size for a given partition of the function variables. We consider the problem of computing optimal decompositions in this paper for general Boolean functions and those represented using CNFs. We introduce the notion of an interaction function, which characterizes the relationship between two sets of variables and can form the basis of obtaining such decompositions. We contrast the use of these functions to the current practice of computing decompositions, which is based on heuristic methods that can be viewed as using approximations of interaction functions. We show that current methods can lead to decompositions that are exponentially larger than optimal decompositions, pinpoint the specific reasons for this lack of optimality, and finally present empirical results that illustrate some characteristics of interaction functions in contrast to their approximations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.