Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional (3D) deformity, and the plane of maximum curvature (PMC) is proposed to reflect these clinical features, which refers to a vertical plane presenting the maximum projected spinal curvature and its parameters include the PMC Cobb and orientation (angle between PMC and sagittal planes). This study aimed to develop a computational method (CM) for PMC estimation. Twenty-nine patients with AIS and computed tomography (CT) images were recruited. For CT, PMC was determined by rotating a vertical plane about its vertical axis with 5° increment until the maximum Cobb angle was measured. For CM, PMC was estimated via identifying the eight points (the corner points of the superior and inferior endplates of the upper and lower end-vertebrae respectively) in the coronal and lateral CT images. Two experienced raters repeated the PMC estimation three times with one-week interval. The intra-class correlation coefficient (ICC) and Bland-Altman method were used for statistical analysis. Twenty-seven right thoracic curves (RTs) (mean Cobb: 46.1°±12.4°) and 23 left thoracolumbar/lumbar (LTLs/LLs) (mean Cobb: 30.6°±11.1°) were analysed. The intra- and inter-rater ICC values were >0.91 and 0.84 in RTs and LTLs/LLs, respectively. The PMCs obtained from the CM and CT were showed good agreement was also observed between the PMCs obtained from the two methods according to ICC (>0.90) and Bland-Altman method assessments. This purpose-design computational method could provide reliable and valid estimation of PMCs for AIS, which has potential to be used as an alternative for 3D assessment.