As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The process of consolidating medical records from multiple institutions into one data set makes privacy-preserving record linkage (PPRL) a necessity. Most PPRL approaches, however, are only designed to link records from two institutions, and existing multi-party approaches tend to discard non-matching records, leading to incomplete result sets. In this paper, we propose a new algorithm for federated record linkage between multiple parties by a trusted third party using record-level bloom filters to preserve patient data privacy. We conduct a study to find optimal weights for linkage-relevant data fields and are able to achieve 99.5% linkage accuracy testing on the Febrl record linkage dataset. This approach is integrated into an end-to-end pseudonymization framework for medical data sharing.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.