As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The detection of cardiac arrhythmias has a long history in medicine, with current developments focusing on early detection using mobile devices. In basic research, however, the use cases and data differ greatly from the experimental setup. We developed a Python-based system to ease detection and analysis of arrhythmic sections in signals measured on extracted and stimulated cardiac myocytes. Multiple algorithms were integrated into the system, tested and evaluated. The best algorithm resulted in an F1-score of 0.97 and was primarily provided in the application.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.