As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We focus on the theoretical approaches aimed to analyze thermoelectric properties at the nanoscale. We discuss several relevant theoretical approaches for different set-ups of nano-devices providing estimations of the thermoelectric parameters in the linear and non-linear regime, in particular the thermoelectric figure of merit and the power-efficiency trade-off. Moreover, we analyze the role of not only electronic, but also of vibrational degrees of freedom. First, nanoscale thermoelectric phenomena are considered in the quantum coherent regime using the Landauer-BÂĺuttiker method and focusing on effects of energy filtering. Then, we analyze the effects of many-body couplings between nanostructure degrees of freedom, such as electron-electron and electron-vibration interactions, which can strongly affect the thermoelectric conversion. In particular, we discuss the enhancement of the thermoelectric figure of merit in the Coulomb blockade regime for a quantum dot model starting from the master equation for charge state probabilities and the tunneling rates through the electrodes. Finally, within the non-equilibrium Green function formalism, we quantify the reduction of the thermoelectric performance in simple models of molecular junctions due to the effects of the electron-vibration coupling and phonon transport at room temperature.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.