As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Electrical stimulation (ES) can promote peripheral nerve repair. Nevertheless, the basis of ES generally requires conductive tissue engineering scaffolds. In this work, a neural tissue engineering scaffold is prepared from a series of conductive composites. The conductive composites, hydroxyethyl cellulose (HEC)/soy protein isolate (SPI)/polyaniline (PANI) films (HSPFs), were prepared by natural volatilization of HEC/SPI solution and then in-situ polymerization of aniline. Subsequently, the HSPFs films were confirmed by ATR-FTIR, water contact angle and SEM characterization. The conductivity of HSPFs reached 0.45 S/m superlatively and cell contact test showed that HSPFs had good cytocompatibility with PC12 cells. Most important of all, the neurite lengths and BDNF protein expression of PC12 cells on HSPFs can be promoted by ES. These results indicated that the ES may have potential application in nerve tissue engineering field through the conductive HSPFs films.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.