

Irreversible pulp inflammation is so painful that the clinical treatment is the removal of the entire pulp tissue. The current irreversibility of this inflammation is due to the lack of suitable biomaterials able to control it and to orchestrate pulp regeneration. Vitality of the tooth is so important for its functional life that adequate regenerative biomaterials must be developed. Whatever the degree of tooth maturity and its pathology, pulp and surrounding tissues constitute a treasure of dental stem cells. Advances of regenerative nanomedicine provide innovative strategies to use these strongly regenerative stem cells for endodontic regeneration. These cells can support endodontic regeneration by cell homing or by being seeded in biomaterials. Whatever the regenerative strategy, nanotechnologies optimise the attraction, colonisation, proliferation and differentiation of dental stem cells. The nano-reservoirs of active biomolecules orchestrate and enhance their cellular functions. The nanofibers constitute biomimetic scaffolds which promote their pulp connective tissue regeneration. Nanostructured composite scaffolds functionalized by controlled drug delivery systems of several active biomolecules would be the future nanobiomaterials for meeting the challenge of the complex endodontic regeneration.