As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Model counting, or counting the number of solutions of a propositional formula, generalizes SAT and is the canonical #P-complete problem. Surprisingly, model counting is hard even for some polynomial-time solvable cases like 2-SAT and Horn-SAT. Efficient algorithms for this problem will have a significant impact on many application areas that are inherently beyond SAT, such as bounded-length adversarial and contingency planning, and, perhaps most importantly, general probabilistic inference. Model counting can be solved, in principle and to an extent in practice, by extending the two most successful frameworks for SAT algorithms, namely, DPLL and local search. However, scalability and accuracy pose a substantial challenge. As a result, several new ideas have been introduced in the last few years that go beyond the techniques usually employed in most SAT solvers. These include division into components, caching, compilation into normal forms, exploitation of solution sampling methods, and certain randomized streamlining techniques using special constraints. This chapter discusses these techniques, exploring both exact methods as well as fast estimation approaches, including those that provide probabilistic or statistical guarantees on the quality of the reported lower or upper bound on the model count.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.