As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Parameterized complexity is a new theoretical framework that considers, in addition to the overall input size, the effects on computational complexity of a secondary measurement, the parameter. This two-dimensional viewpoint allows a fine-grained complexity analysis that takes structural properties of problem instances into account. The central notion is “fixed-parameter tractability” which refers to solvability in polynomial time for each fixed value of the parameter such that the order of the polynomial time bound is independent of the parameter. This chapter presents main concepts and recent results on the parameterized complexity of the satisfiability problem and it outlines fundamental algorithmic ideas that arise in this context. Among the parameters considered are the size of backdoor sets with respect to various tractable base classes and the treewidth of graph representations of satisfiability instances.