As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This work introduces Multi-Fusion Network for human-object interaction detection with multiple cameras. We present a concept and implementation of the architecture for a beverage refrigerator with multiple cameras as proof-of-concept. We also introduce an effective approach for minimizing the required amount of training data for the network as well as reducing the risk of overfitting, especially when dealing with a small data set that is commonly recorded by a person or small organization.
The model achieved high test accuracy and comparable results in a real-world scenario at the Event Solutions in Hamburg 2019. Multi-Fusion Network is easy to scale due to shared learnable parameters. It is also lightweight, hence suitable to run on small devices with average computation capability. Furthermore, it can be used for smart home applications, gaming experiences, or mixed reality applications.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.