As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Ontology module extraction, from a large ontology, leads to the generation of a specialized knowledge model that is pertinent to specific problems. Existing ontology module extraction methods tend to either render a too generalized or a too restricted ontology module that at times does not capture the entire semantics of the source ontology. We present an ontology module extraction method that extracts a contextualized ontology module whilst extending the semantics of the extracted concepts and their relationships in the ontology module. Our approach features the following tenets (i) identifying the user-selected concepts that are pertinent for the problem-context at hand; (ii) extracting the user-selected concepts, their roles and their individuals; and (iii) extracting other concepts, roles and individuals that are structurally-connected with the user-selected concepts. We apply our ontology module extraction method in the Healthcare domain, and demonstrate (a) extraction of ontology modules from three prostate cancer pathway ontologies; and then (b) merging of extracted ontology modules to generate a comprehensive therapeutic work-flow knowledge for prostate cancer care management.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.