As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Argument mining, a subfield of natural language processing and text mining, is a process of extracting argumentative text portions and identifying the role the selected texts play. Legal argument mining targets the argumentative parts of a legal text. In order to better understand how to apply legal argument mining as a step toward improving case summarization, we have assembled a sizeable set of cases and human-expert-prepared summaries annotated in terms of legal argument triples that capture the most important skeletal argument structures in a case. We report the results of applying multiple machine learning techniques to demonstrate and analyze the advantages and disadvantages of different methods to identify sentence components of these legal argument triples.