As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Judgment prediction is the task of predicting various outcomes of legal cases of which sentencing prediction is one of the most important yet difficult challenges. We study the applicability of machine learning (ML) techniques in predicting prison terms of drug trafficking cases. In particular, we study how legal domain knowledge can be integrated with ML models to construct highly accurate predictors. We illustrate how our criminal sentence predictors can be applied to address four important issues in legal knowledge management, which include (1) discovery of model drifts in legal rules, (2) identification of critical features in legal judgments, (3) fairness in machine predictions, and (4) explainability of machine predictions.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.