As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we build a deep learning network to predict the trends of natural gas prices. Given a time series, for each day, the gas price trend is classified as “up” and “down” according to the price compared to the last day. Meanwhile, we collect news articles as experimental materials from some natural gas related websites. Every article was then embedded into vectors by word2vec, weighted with its sentiment score, and labeled with corresponding day’s price trend. A CNN and LSTM fused network was then trained to predict price trend by these news vectors. Finally, the model’s predictive accuracy reached 62.3%, which outperformed most of other traditional classifiers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.