As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Belief function has always played an indispensable role in modeling cognitive uncertainty. As an inherited version, the theory of D numbers has been proposed and developed in a more efficient and robust way. Within the framework of D number theory, two more generalized properties are extended: (1) the elements in the frame of discernment (FOD) of D numbers do not required to be mutually exclusive strictly; (2) the completeness constraint is released. The investigation shows that the distance function is very significant in measuring the difference between two D numbers, especially in information fusion and decision. Modeling methods of uncertainty that incorporate D numbers have become increasingly popular, however, very few approaches have tackled the challenges of distance metrics. In this study, the distance measure of two D numbers is presented in cases, including complete information, incomplete information, and non-exclusive elements
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.