As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The main objective of Perceptual Image Super Resolution is to obtain a high resoluted image from a normal low resolution image. The task is very simple that we just want to make a Low firmness appearance into a extraordinary resolution image. To perform this task we have various methods like Classical Approach in which we try to maximize the mean squared error, evaluate by PSNR(Peak-Signal-to-Noise-Ratio). The first method used to perform this operation was SRCNN (Super Resolution Convolution Neural Network) and these days many of them use DRCN and VDSR which are slightly upgraded methods. Another technique used for the purpose of upscaling to get a high resoluted image from normal little resolution image is the state of art by PSNR. This method was a quite simple one in which we take a low determination image as input and place in a convolution neural network(CNN) and produce a high resolution image as the output. In this technique the edges will be clearly defined, but the whole image will be blurred. This method is unable to produce good-looking textures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.