As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Magnetic flux leakage (MFL) testing is a widely used electromagnetic nondestructive testing (ENDT) method, which has the ability to detect both surface and sub-surface defects in conductive materials. One of its best features is its ability to mathematically model field leakage from the defect area in a magnetized material. In this paper, we propose an optimized FEM model using geometrical weighted tensor (TBFEM), for the calculation of leakage field in MFL. This model using the Einstein’s convention eliminates the bulky nature of traditional FEM based on its matrix algebra formation allowing for easy implementation and fast calculations. The proposed model achieves this by reducing the set of matrix equations into a single equation using suffixes which can then be solved with regular mathematical operations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.