As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Pipeline-based speech translation methods may suffer from errors found in speech recognition system output. Therefore, it is crucial that machine translation systems are trained to be robust against such noise. In this paper, we propose two methods for parallel data augmentation for pipeline-based speech translation system development. The first method utilises a speech processing workflow to introduce errors and the second method generates commonly found suffix errors using a rule-based method. We show that the methods in combination allow significantly improving speech translation quality by 1.87 BLEU points over a baseline system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.