As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The paper presents research results for solving the task of targeted aspect-based sentiment analysis in the specific domain of Lithuanian social media reviews. Methodology, system architecture, relevant NLP tools and resources are described, finalized by experimental results showing that our solution is suitable for solving targeted aspect-based sentiment analysis tasks for under-resourced, morphologically rich and flexible word order languages.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.