As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Student performance is the most factor that can be beneficial for many parties, including students, parents, instructors, and administrators. Early prediction is needed to give the early monitor by the responsible person in charge of developing a better person for the nation. In this paper, the improvement of Bagged Tree to predict student performance based on four main classes, which are distinction, pass, fail, and withdrawn. The accuracy is used as an evaluation parameter for this prediction technique. The Bagged Tree with the addition of Bag, AdaBoost, RUSBoost learners helps to predict the student performance with the massive datasets. The use of the RUSBoost algorithm proved that it is very suitable for the imbalance datasets as the accuracy is 98.6% after implementing the feature selection and 99.1% without feature selection compared to other learner types even though the data is more than 30,000 datasets.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.