As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The paper proposes a novel approach for fault classification in an Internal Combustion (IC) engine using wavelet energy features and geometric mean neuron model based neural networks. Live signals from the engine were collected with and without faults by using four industrial microphones. The acoustic signals measured for faulty engines were decomposed using wavelet transform. The energy of each decomposed signal was computed and used as a feature vector for further classification using GMN based neural networks.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.