As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Timely identification of risk factors in the early stages of pregnancy, risk management and mitigation, prevention, adherence management can reduce the number of adverse perinatal outcomes and complications for both mother and a child. We have retrospectively analyzed electronic health records from the perinatal Center of the Almazov specialized medical center in Saint-Petersburg, Russia. Correlation analysis was performed using Pearson correlation coefficient to select the most relevant predictors. We used APGAR score as a metrics for the childbirth outcomes. Score of 5 and less was considered as a negative outcome. To analyze the influence of the unstructured anamnesis data on the prediction accuracy we have run two prediction experiments for every classification task: 1. Without unstructured data and 2. With unstructured data. This study presents implementation of predictive models for adverse childbirth events that provides higher precision than state of the art models. This is due to the use of unstructured medical data in addition to the structured dataset that allowed to reach 0.92 precision. Identification of main risk factors using the results of the features importance analysis can support clinicians in early identification of possible complications and planning and execution preventive measures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.