As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Prediction of a labor due date is important especially for the pregnancies with high risk of complications where a special treatment is needed. This is especially valid in the countries with multilevel health care institutions like Russia. In Russia medical organizations are distributed into national, regional and municipal levels. Organizations of each level can provide treatment of different types and quality. For example, pregnancies with low risk of complications are routed to the municipal hospitals, moderate risk pregnancies are routed to the reginal and high risk of complications are routed to the hospitals of the national level. In the situation of resource deficiency especially on the national level it is necessary to plan admission date and a treatment team in advance to provide the best possible care. When pregnancy data is not standardized and semantically interoperable, data driven models. We have retrospectively analyzed electronic health records from the perinatal Center of the Almazov perinatal medical center in Saint-Petersburg, Russia. The dataset was exported from the medical information system. It consisted of structured and semi structured data with the total of 73115 lines for 12989 female patients. The proposed due date prediction data-driven model allows a high accuracy prediction to allow proper resource planning. The models are based on the real-world evidence and can be applied with limited amount of predictors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.