As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Technological advancements in smart assistive technology enable navigating and manipulating various types of computer-aided devices in the operating room through a contactless gesture interface. Understanding surgeon actions is crucial to natural human-robot interaction in operating room since it means a sort of prediction a human behavior so that the robot can foresee the surgeon’s intention, early choose appropriate action and reduce waiting time. In this paper, we present a new deep network based on Convolution Long Short-Term Memory (ConvLSTM) for gesture prediction configured to provide natural interaction between the surgeon and assistive robot and improve operating-room efficiency. The experimental results prove the capability of reliably recognizing unfinished gestures on videos. We quantitatively demonstrate the latter ability and the fact that GestureConvLSTM improves the baseline system performance on LSA64 dataset.