As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Lack of specialized data makes building a multi-domain neural machine translation tool challenging. Although emerging literature dealing with low resource languages starts to show promising results, most state-of-the-art models used millions of sentences. Today, the majority of multi-domain adaptation techniques are based on complex and sophisticated architectures that are not adapted for real-world applications. So far, no scalable method is performing better than the simple yet effective mixed-finetuning, i.e finetuning a generic model with a mix of all specialized data and generic data. In this paper, we propose a new training pipeline where knowledge distillation and multiple specialized teachers allow us to efficiently finetune a model without adding new costs at inference time. Our experiments demonstrated that our training pipeline allows improving the performance of multi-domain translation over finetuning in configurations with 2, 3, and 4 domains by up to 2 points in BLEU.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.