As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Diagnosing diseases such as leukemia or anemia requires reliable counts of blood cells. Hematologists usually label and count microscopy images of blood cells manually. In many cases, however, cells in different maturity states are difficult to distinguish, and in combination with image noise and subjectivity, humans are prone to make labeling mistakes. This results in labels that are often not reproducible, which can directly affect the diagnoses. We introduce TIMELY, a probabilistic model that combines pseudotime inference methods with inhomogeneous hidden Markov trees, which addresses this challenge of label inconsistency. We show first on simulation data that TIMELY is able to identify and correct wrong labels with higher precision and recall than baseline methods for labeling correction. We then apply our method to two real-world datasets of blood cell data and show that TIMELY successfully finds inconsistent labels, thereby improving the quality of human-generated labels.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.