As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The sequential allocation protocol is a simple and popular mechanism to allocate indivisible goods, in which the agents take turns to pick the items according to a predefined sequence. While this protocol is not strategy-proof, it has been recently shown that finding a successful manipulation for an agent is an NP-hard problem [1]. Conversely, it is also known that finding an optimal manipulation can be solved in polynomial time in a few cases: if there are only two agents or if the manipulator has a binary or a lexicographic utility function. In this work, we take a parameterized approach to provide several new complexity results on this manipulation problem. More precisely, we give a complete picture of its parameterized complexity w.r.t. the following three parameters: the number n of agents, the number μ(a1) of times the manipulator a1 picks in the picking sequence, and the maximum range rgmax of an item. This third parameter is a correlation measure on the preference rankings of the agents. In particular, we provide XP algorithms for parameters n and μ(a1), and we show that the problem is fixed-parameter tractable w.r.t. rgmax and n + μ(a1). Interestingly enough, we show that w.r.t. the single parameters n and μ(a1) it is W[1]-hard.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.