As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We applied and compared two supervised pattern recognition techniques, namely the Multilayer Perceptron (MLP) and Support Vector Machine (SVM), to classify seismic signals recorded on Stromboli volcano. The available data are firstly preprocessed in order to obtain a compact representation of the raw seismic signals. We extract from data spectral and temporal information so that each input vector is made up of 71 components, containing both spectral and temporal information extracted from the early signal. We implemented two classification strategies to discriminate three different seismic events: landslide, explosion-quake, and volcanic microtremor signals. The first method is a two-layer MLP network, with a Cross-Entropy error function and logistic activation function for the output units. The second method is a Support Vector Machine, whose multi-class setting is accomplished through a 1vsAll architecture with gaussian kernel. The experiments show that although the MLP produces very good results, the SVM accuracy is always higher, both in term of best performance, 99.5%, and average performance, 98.8%, obtained with different sampling permutations of training and test sets.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.