As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We propose a 3D self organizing neural model for modeling both the background and the foreground in video, helping in distinguishing between moving and stopped objects in the scene. Our aim is to detect foreground objects in digital image sequences taken from stationary cameras and to distinguish them into moving and stopped objects by a model based approach. We show through experimental results that a good discrimination can be achieved for color video sequences that represent typical situations critical for vehicles stopped in no parking areas.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.