As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Music transcription consists in transforming the musical content of audio data into a symbolic representation. The objective of this study is to investigate a transcription system for polyphonic piano. The proposed method focuses on temporal musical structures, note events and their main characteristics: the attack instant and the pitch. Onset detection exploits a time-frequency representation of the audio signal. Note classification is based on constant Q transform (CQT) and support vector machines (SVMs). Finally, to validate our method, we present a collection of experiments using a wide number of musical pieces of heterogeneous styles.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.