As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Biometric template security and privacy are a great concern of biometric systems, because unlike passwords and tokens, compromised biometric templates cannot be revoked and reissued. In this paper we present a protection scheme for a face verification system based on a user dependent pseudo-random ordering of the DCT template coefficients and MPL and RBF Neural Networks for classification. In addition to privacy enhancement, because a hacker can hardly match a fake biometric sample without knowing the pseudo-random ordering this scheme, the proposed system also increases the biometric recognition performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.