As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Object segmentation is a challenging and important problem in computer vision. The difficulties to obtain accurate segmentations using only the traditional Top-down or Bottom-up approaches have introduced new proposals based on the idea of combining them in order to obtain better results. In this paper we present a novel approach for object segmentation based on the following two steps: 1) oversegment the image in homogeneous regions using a Region Growing algorithm (Bottom-up), and 2) use prior knowledge about the object appearence (local patches and spatial coherence) from annotated images to validate and merge the regions that belong to the object (Top-down). Our experiments using different object classes from the well-known TUD and the Weizmann databases show that we are able to obtain good object segmentations from a generalistic segmentation method.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.