As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Electronic health records contain valuable information on patients’ clinical history in the form of free text. Manually analyzing millions of these documents is unfeasible and automatic natural language processing methods are essential for efficiently exploiting these data. Within this, normalization of clinical entities, where the aim is to link entity mentions to reference vocabularies, is of utmost importance to successfully extract knowledge from clinical narratives. In this paper we present sieve-based models combined with heuristics and word embeddings and present results of our participation in the 2019 n2c2 (National NLP Clinical Challenges) shared-task on clinical concept normalization.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.