As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The objective of this study is to develop a method for clinical abbreviation disambiguation using deep contextualized representation and cluster analysis. We employed the pre-trained BioELMo language model to generate the contextualized word vector for abbreviations within each instance. Then principal component analysis was conducted on word vectors to reduce the dimension. K-Means cluster analysis was conducted for each abbreviation and the sense for a cluster was assigned based on the majority vote of annotations. Our method achieved an average accuracy of around 95% in 74 abbreviations. Simulation showed that each cluster required the annotation of 5 samples to determine its sense.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.