As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Adverse drug reactions (ADRs) are frequent and associated to significant morbidity, mortality and costs. Therefore, their early detection in the hospital context is vital. Automatic tools could be developed taking into account structured and textual data. In this paper, we present the methodology followed for the manual annotation and automatic classification of discharge letters from a tertiary hospital. The results show that ADRs and causal drugs are explicitly mentioned in the discharge letters and that machine learning algorithms are efficient for the automatic detection of documents containing mentions of ADRs.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.