As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Explainable AI has recently gained momentum as an approach to overcome some of the more obvious ethical implications of the increasingly widespread application of AI (mostly machine learning). It is however not always completely evident whether providing explanations actually achieves to overcome those ethical issues, or rather create a false sense of control and transparency. This and other possible misuses of Explainable AI leads to the need to consider the possibility that providing explanations might itself represent a risk with respect to ethical implications at several levels. In this chapter, we explore through a series of scenarios how explanations in certain circumstances might affect negatively specific ethical values, from human agency to fairness. Through those scenarios, we discuss the need to consider ethical implications in the design and deployment of Explainable AI systems, focusing on how knowledge-based approaches can offer elements of solutions to the issues raised. We conclude on the requirements for ethical explanations, and on how hybrid-systems, combining machine learning with background knowledge, offer a way towards achieving those requirements.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.