As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Integrated Modular Avionics (IMA) system realizes the residence of various avionics functions on standardized hardware and integration also brings some problems such as resource defect spread and functional error cross-linking. To make sure the health of the aircraft, it is essential to carry out a comprehensive health assessment of the IMA system. This paper proposes an IMA system health assessment method based on random forest. First, build the IMA system health assessment framework and transform the mapping that affects the health of the IMA system and the health status of the IMA system into the classification problem in supervised learning. Then give a health assessment method based on random forest, and through incremental learning, the new data generated during the operation of the IMA system can improve the evaluation effect in real-time. Finally, through the system health dataset to realize a comprehensive evaluation of the health status of the IMA system. The results show that the method can perform a comprehensive health assessment with high accuracy for the IMA system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.