As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The analysis of plantar pressure imaging does not perform well preprocessing, dimensionality reduction and feature calculation; this makes the research of foot comfort by statistical methods have the defects of linearization and poor robustness. The intelligent analysis technology to achieve the extraction of the plantar functional area, providing a streamlined and content-rich data set for the study of plantar pressure comfort is very effective and feasible. Different from the existing local-based segmentation technique of the plantar pressure image, the bottom pressure image mean shifting segmentation model segments the plantar pressure image from a global perspective to obtain more accurate segmentation results; by using pixel precision, average pixel precision, uniform cross-section, frequency-to-weight ratio, segmentation accuracy, over-segmentation rate, under-segmentation rate and Dice coefficient for contrast segmentation, the proposed mean shift local de-dimensionality morphological segmentation performs higher effectiveness.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.