As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Reasoning with evidence is error prone, especially when qualitative and quantitative evidence is combined, as shown by infamous miscarriages of justice, such as the Lucia de Berk case in the Netherlands. Methods for the rational analysis of evidential reasoning come in different kinds, often with arguments, scenarios and probabilities as primitives. Recently various combinations of argumentative, narrative and probabilistic methods have been investigated. By the complexity and subtlety of the subject matter, it has proven hard to assess the specific strengths and points of attention of different methods. Comparative case studies have only recently started, and never by one team. In this paper, we provide an analysis of a single case in order to compare the relative merits of two methods recently proposed in AI and Law: a method using Bayesian networks with embedded scenarios, and a method using case models that provide a formal analysis of argument validity. To optimise the transparency of the two analyses, we have selected a case about which the final decision is undisputed. The two analyses allow us to provide a comparative evaluation showing strengths and weaknesses of the two methods. We find a core of evidential reasoning that is shared between the methods.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.