From raw data of experience to linguistic forms, from cognitively structured conceptualizations to valuable social assets, the interest in the different nuances of the concept of ‘knowledge’ have characterized natural and social sciences since the dawn of human thought. Across Ages, several theorizations have been put forward and disputes contended around the theme of the multi shaped character of knowledge: in the last years, a new fervour has concerned the production and exchange of knowledge in the business domain. In this context “knowledge contents” have often been flattened to information encoded into computer systems, enabling activities like storage and retrieval through relational database structures, machine-tractability through dedicated computational languages and algorithm-based elaboration. This general phenomenon reveals an underlying conflation between “knowledge assets” possessed-by and transferred-through human resources of firms and “information contents” embedded into industrial information systems. In this picture, Knowledge Management (KM) methodologies and applications have been largely biased by Knowledge Engineering (KE) solutions, stressing the level of formal representation and computability but discarding the centrality of the cognitive construction of knowledge operated by human agents over information flows. Although the intersection between KE and KM has led to a general improvement of information systems in terms of massive data analysis and maintenance, decision-making strategies, information retrieval and exchange, etc., the overlap between these two fields have contributed to eclipse the interest on genuine knowledge processes (production, sharing and transfer of new knowledge) and on how to manage them.
It is nowadays widely agreed that the semantic dimension of information plays an increasingly central role in a networked knowledge-centred economy: semantic-based applications aim to provide a framework for information sharing, reliable information exchange, enabling negotiation and coordination between distinct organizations or among members of the same organization.
As testified by research and industrial projects, ‘Semantic Technologies’ are bound to a life-cycle constituted by acquisition, retrieval, modelling, reuse, publishing and maintenance of knowledge.
In Computer Science, this particular notion of ‘knowledge’ would correspond to T-box (terminological) statements in a knowledge base (i.e. student is a subclass of person). The assertion component (A-box), namely factual knowledge associated to terminology (i.e. John is a person), is not so central in the present context. KQML (Knowledge Query and Manipulation Language) is one of the most well known language protocols in the field, together with FIPA ACL (Foundation for Intelligent Physical Agents – Agent Communication Language)
Historically framed in the philosophical tradition and “imported” into the KE framework in the late 90's, “Formal Ontology” (as a discipline) has recently contributed to broaden the scope of inquiry into the notion of knowledge, exploring interdisciplinary areas like Cognitive Science, Social Sciences, Biology, etc. Nevertheless, the problem of managing such knowledge, especially in the business domain and industrial scenarios, has only been skimmed by Formal Ontology. In one sense, if formalization of the ontological categories/concepts is a task per se and, as such, it fosters knowledge sharing/transfer, it is also true that sharing doesn't come “for free”, and efforts need to be made to 1) understand the role of formal ontologies in the production of new knowledge; 2) turn formal ontologies into effective tools for a new generation of KM software; 3) develop standard formal ontologies for different industrial domains.
These remarks constitute the main reason why we chose to co-locate the fourth edition of the “Formal Ontologies Meet Industry” workshop (FOMI)
Past editions: 2005 (Verona), 2006 (Trento), 2008 (Torino).
In fact the contributions presented under the scope of FOMI show a variety from both the methodological as well as the stylistic viewpoint. Some of these are more theoretically oriented and are especially concerned with genuine ontological analysis. The paper by Hamdani and Gargouri, with the title “Towards an approach for evolving information systems' ontologies” is focused on the evolution of ontologies in accordance with the evolution of the domain they are designed for. They build an approach based on operators of change that is aimed at keeping track of the evolution of the information system ontology design and at the same time keeping the consistency and the coherence with the domain through the whole life cycle of the system.
In some other papers ontological analysis is still the main concern, but it is carried out within the study of a particular domain.
“Parts, Compositions and Decompositions of Functions in Engineering Ontologies” by Vermaas analyzes the relations of functional composition and decomposition and compares them with the part-whole relation in mereology in order to understand whether these can be seen as a sort of part-whole relation specific for functions of technical artefacts. A clearer understanding of these relations is particularly important to improve engineering reasoning in systems that deal with functions, like CAD-CAM systems or engineering knowledge bases.
A work focused on design and in particular on architectural design is the one by Hois, Bhatt and Kutz, “Modular Ontologies for Architectural Design”. Their claim is that, given the heterogeneity of the information of the specific architectural domain (quantitative spatial constraints, qualitative relations, functionally-dependent conceptualizations), a modular ontological approach is the one best suited to the integration of the different but equally important perspectives given by this varied information. Their approach is based on the theory of ε-connections and is aimed at being applied to smart office environments.
Another interesting domain is that of electromagnetics, which the paper by Esposito, Tarricone, Vallone and Zappatore, “Towards an Ontology Infrastructure for Electromagnetics” deals with. An interesting feature of the ontological framework they propose is that it is based on a publicly available top level ontology and the choice has been determined by the will of providing a modular and layered architecture that should enable knowledge sharing and reusability for the electromagnetics scientific community.
“Do you still want to vote for your favourite politician? Ask Ontobella!”, the article by Garbacz, Lechniak, Kulicki and Trypuz presents an interesting approach based on the philosophy of Roman Ingarden to the ontology of beliefs, a domain that, despite its relevance for artificial intelligence, has not so far received the attention it deserves from scholars in the ontology community. The paper also contains an interesting preliminary formalization and an application to an example taken from political debates.
In contrast, some works are concerned with the application of ontology-based methodologies and techniques to a particular knowledge management related issue.
The contribution of Hadj Tayeb and Noureddine with the title “Ontological representation for Algerian enterprise modelling” has the purpose of representing – through an ontological framework – a variety of enterprise modelling techniques, distinguished by a list of criteria identified from a theoretical study and the analysis of real case studies relative to Algerian companies. The ontological framework is represented with Protégé.
Borgo and Pozza's paper, “Disentangling Knowledge Objects” is concerned with building a KM framework based on ontological techniques. In particular, a new notion is introduced in the paper, that of knowledge object, comprising three perspectives: material, informational and organizational, proposed as a key concept for enterprise modelling and KM in general.
In addition, some articles provide a contribution in terms of the application of formal ontologies to specific industry domains.
In “A First-Order Cutting Process Ontology for Sheet Metal Parts”, Grüninger and Delaval build an ontology in first order logic that extends the ontology of the ISO 18629 (Process Specification Language) to support the representation of cutting processes in 2D (two dimensions) to be applied to the domain of manufacturing sheet metal parts.
The work by Grenon and De Francisco, “Ontology-strength Industry Standards” deals with the telecommunication domain under the scope of the European project SUPER, where standards, technology neutral architectures, best practices and guidelines are collected in a framework called NGOSS (New Generation of Operation Support Systems). The paper shows that, through an ontologization of standards, it is not only possible to represent concepts in a shared vocabulary like XML, but it also contributes to the enhancement of standards development, dissemination and operationalization.
Finally, Corsar, Moss, Sleeman and Sim, in their article “Supporting the Development of Medical Ontologies” present an approach to biomedicine based on the construction of small domain ontologies, tailored to some very specific tasks, that are very efficient from the point of view of tractability and inferencing. These ontologies are then integrated with an alignment meta-ontology, enabling interoperability with other standard medical knowledge sources.
As this overview suggests, the double focus on methodological and applicative issues represents the main feature of FOMI 2009 articles, confirming the leitmotiv of the past years' editions: ontologies and ontology-driven methodologies are not simply considered as “closed” systems but as dynamic modules embedded in knowledge technologies. We think that this comprehensive perspective can advance progress towards new frontiers in information systems and knowledge management, where research and development in Formal Ontology plays a leading role.
R. Ferrario and A. Oltramari