As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The transition from conventional vehicles to autonomous vehicles is regulated thorough ADAS (Advanced Driver Assistance Systems) functionalities. The combination of different ADAS functions allows vehicles navigate on a highway autonomously, but at the same time, following the traffic rules and regulations requirements, and also guaranteeing safety on the road. The practical objective in this article is to implement a Reinforcement Learning method whose actions are based in these regulated functions for autonomous vehicles navigation. With this aim, a study of the state-of-the-art of autonomous vehicles simulators has been completed. Hence, the algorithm will be tested using a five-lane highway simulator, previously selected. Results and performance of the model through experimentation will be presented and evaluated using the simulator for different network architectures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.