As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Laser Ablation – Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) is a surface-based technique used to quantify the chemical composition of a solid to its elemental and isotopic level. The output signal for each LA-shot corresponds to a set of time series, in intensities (counts-per-second, cps), that provides information on the quantity of each isotope. LA-ICPMS is widely used in biological sciences. For instance in fish ecology, it is used to analyze fish otoliths (ear stones) to obtain information on the fish’s life history (i.e., origin, migrations or exposure to contaminants). The experimental protocol for translating the actual output from LA-ICPMS into isotope concentration is long and complex. The first step is specially time consuming: the intensities obtained from each shot have to be reviewed one by one by an expert to eliminate procedural spikes and define the intervals that optimally represent (1) the background noise (blank) and (2) the background noise plus the signal (plateau). Here we propose a method to facilitate this first step using a trained neural network. The ELM was trained using cases previously processed to emulate the decisions of the expert. Our results showed that in comparison to the manual treatment the quality of the assessment with ELM was optimal for an automatic processing.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.