As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With the widespread use of mobile phones, the number of malware targeting smart devices has increased exponentially. In particular, the number of malware targeting Android devices, as it is the most popular operative system among smartphones. This paper proposes a novel framework for android malware detection based on the function call graph representation of an application. Our method generates an embedding of the function call graph using random walks and then, a convolutional neural network extracts features from their embedded matrix representation and labels a given application as benign or malicious considering the learned features. The method has been evaluated on a dataset of 3871 APKs and compared against DREBIN, a baseline benchmark. Experiments show that the method achieves competitive results without relying on the manual extraction of features.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.