As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Informal caregivers often complain about missing knowledge. A knowledge-based personalized educational system is developed, which provides caregiving relatives with the information needed. Yet, evaluation against domain experts indicated, that parts of the knowledge-base are incorrect. To overcome these problems the system can be extended by a learning capacity and then be trained further utilizing feedback from real informal caregivers. To extend the existing system an artificial neural network was trained to represent a large part of the knowledge-based approach. This paper describes the found artificial neural network’s structure and the training process. The found neural network structure is not deep but very wide. The training terminated after 374.700 epochs with a mean squared error of 7.731 ∗ 10−8 for the end validation set. The neural network represents the parts of the knowledge-based approach and can now be retrained with user feedback, which will be collected during a system test in April and May 2019.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.