As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents and discusses an empirical work of using machine learning K-means clustering algorithm in analyzing and processing Mobile Augmented Reality (MAR) learning usability data. This paper first discusses the issues within usability and machine learning spectrum, then explain in detail a proposed methodology approaching the experiments conducted in this research. This contributes in providing empirical evidence on the feasibility of K-means algorithm through the discreet display of preliminary outcomes and performance results. This paper also proposes a new usability prioritization technique that can be quantified objectively through the calculation of negative differences between cluster centroids. Towards the end, this paper will discourse important research insights, impartial discussions and future works.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.