As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we discuss the concepts of a flexible and high-performing solution for automatic quality control that integrates state-of-the-art machine learning algorithms with collaborative robots. The overall aim of the paper is to take the first steps towards improved automatic quality inspections in the manufacturing industry, leading to reduced quality defects and reduced costs in the manufacturing process. For developing and evaluating a first version of a solution that integrates state-of-the-art machine vision and collaborative robots we use a real-world case study focusing on improved quality inspection. Results from the case study shows that it is possible to realize automatic quality inspections through the use of a collaborative robot as intended, but also that there are some challenges that need to be further addressed in order to achieve a top-performing system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.