As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We developed a new model for iList, our system that helps students learn linked list. The model is automatically extracted from past student data, and allows iList to track students' problem-solving behavior in order to provide targeted feedback. We evaluated the new model both intrinsically and extrinsically. We show that the model can match most student actions after a relatively small sequence of observations, and that iList can effectively use the new student tracker to provide feedback and help students learn.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.