As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A significant part of medical knowledge is stored as unstructured free text. However, clinical narratives are known to contain duplicated sections due to clinicians’ copy/paste parts of a former report into a new one. In this study, we aim at evaluating the duplications found within patient records in more than 650,000 French clinical narratives. We adapted a method to identify efficiently duplicated zones in a reasonable time. We evaluated the potential impact of duplications in two use cases: the presence of (i) treatments and/or (ii) relative dates. We identified an average rate of duplication of 33%. We found that 20% of the document contained drugs mentioned only in duplicated zones and that 1.45% of the document contained mentions of relative dates in duplicated zone, that could potentially lead to erroneous interpretation. We suggest the systematic identification and annotation of duplicated zones in clinical narratives for information extraction and temporal-oriented tasks.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.